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Membrane forces in the segment of a thin toroidal shell loaded by an edge bend- 
ing load are determined from the particular solution of the fundamental differen- 
tial equation. Taking account of the asymptotic approximation of the special 
function in whose terms the particular solution is expressed, it is shown in [1] that 
the particular solution for a thin toroidal shell agrees with the membrane solution. 
In the general case, the tensile forces in a shell not closed in two coordinates are 
determined by membrane theory ; the membrane state of stress is determined 



taking the solution obtained into account. The method of characteristic&used 
in [Z] to analyze membrane shells, is used to solve the problem. The ftmdamen- 

tal differential equation is solved by means of a special integral transform Using 

Fourier series. Results of a numerical com~tation on an electronic computer 
and of an experiment are presented. 

A thin elastic toroidal shell bounded by the coordinates o < cp < n and - nili < 
t1 -; n/6 is considered, An external edge moment M, is applied to the edge tl = - n/6 

through a stiff disc which is rotated through an angle 09, around the Y -axis. The outer 
edge 0 = 3,‘~ is clamped rigidly and remains fixed. The edges T = (,I and rp = x are 

free of external forces (see Fig. 1). 
The fundamental differential equation of a toroidal shell under a bending load is [l] 

@Y 
(h. + sin $1 dez - - 3 g co9 % - iZy”Y sin 8 = 4rp@ ($1 (h + sin %jS CB 

ic 
Fig., 1 

-My For thin shells with the ratio 
hia, < 1140% , the membrane forces 
are determined mainly by a particu- 

lar solution of (1) [3], which agrees 
with the membrane so&ztion obtained 

z by dividing the right side in (1) by 
the coefficient of Y Cl], Hence, to 
determine the tensile forces in a thin 
toroidal shell which is not closed in 
two coordinates, membrane theory 

can be used, The possibiU.ty of such 
a formulation of the problem with 
boundary conditions given in terms 
of forces has been noted in f43. 

The main equation of a membrane 

toroidal shell with an edge loading 

is [SJ 

U= - TzRl sin 0 

For a toroidal shell R, = a, R, = Y/sin 8. After differentiation,(2) becomes 

lPT2 
x(h+sin%) sin0 + a~ JZ. (3hf 5 sin %) cos 0 + 

PTZ 

Solving the equation of characteristics of the ftmdamental equation (3) for ‘p, we find 
the ordinate for the intersection between the characteristic passing through the origin 

and the line 8 = n/6 --R/S 
r de 

In particular, we obtain RIO =: x/4 for h = 3.44. 
Giving the value of the desired function Ta on coordinate segments of the intersection 



between the characteristic and the line 6 = - n/6, we obtain the solution of the fun- 
damental equation (3). 

The proof of the existence and uniqueness conditions for the solution is given in this 
case by the Cauchy-Riemann theorem, 

The domain in which the problem can be solved is determined from the existence 
condition for the solution. For 9 < To the influence of the free edge cp = 0 must be 
taken into account, outside a domain bounded by the coordinate ‘p = ‘p,, the influence 

of the edge ‘p = 0 is negligible, and the analysis of the shell for ‘p > % does not differ 
from the solution of the analogous problem for a shell closed in the circumferential co- 
ordinate. 

Fig. 2 

A diagram of the circumferential forces T, in a torus segment closed along cp isgiven 
in Fig. 2 for a loading by a moment M, in the section q = qs . For a section of the 
shell bounded by the coordinates a, Q 8 < fi, the boundary conditions are formulated 

as follows : 
Tz Ipzo =o* Tz I_ = f (0) (4) 

1’2 l&.al = 0, 7’2 In ‘,, (1 (5) 

where f (0) is a given function, the magnitude of the forces T, in a shell closed along ‘p 
The solution of the fundamental equation (3) is determined by the Fourier series [6] 

(6) 

where the function T, is determined from the solution of the ordinary differential equa- 
tion obtained from (3) by a transformation which is defined by the second expression in 

(6). 
The series obtained do not satisfy the second boundary condition in (3 on the edge 

Fig. 3 

Cp = 'Pn - To obtain the final solution, it is 
necessary to augment the series (6) by an 
appropriate series (in the functions sin XSCP!U+,) 
for an auxiliary function F which takes the 
same values on the boundaries of the interval 
(r _ 0 and rp = CJL, as does the desired func- 

tion T,. 

The diagram of T2 in the section 0 = 
- 0.4, the result of an electronic computer 
computation by the method presented, is pro- 
duced in Fig. 3 (curve 1). 
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The following approximate methods can be used for a qualitative estimate. For 9 = 0 
the fundamental equation (3) degenerates into the parabolic equation 

Separating variables and integrating the equation with respect to 6, we obtain 

s dz R2 -- 
z --x d0, s In 1 z ( -= - 3h 

R2(j 

For 6 = 0, z = 1 the solution of (7) becomes 

T2 = C, sin 6~ + C, cos ST, 6 = r/4 - R” 

(R is a constant obtained in the separation of variables). 
We take the boundary conditions (4) for (7). Taking account of the first condition in 

(4), we obtain 
Ts = C, sin bcp 

We have for the functions TI* and dTB*/dq 

Tz* I_ = T;(,) CQS ‘?% 
dTz* 

- dq q=vo 
= - T2* sin ‘po 

for a periodic state of stress in a shell closed along Cp under a loading by the edge mo- 

ment M, in the section (P = ‘p. , where T,(,, is the magnitude of Tz in the section 

q = 0 in a torus segment closed along cp . Taking account of (9), we have in the sector 

of a torus segment 

Tz Lr = CI sin acp0, 
dTz 
F Q=Qe 

= Cl8 sin 
( 

&IO + + 
1 (11) 

Equating the desired function T, and its derivative to analogous known values for a 
shell closed along cp , we obtain a transcendental equation from (10) and (11) to deter- 
mine 8 

-. tg fpo sin &J, = 8 sin (@, + n/2) 

In the case under consideration 6 = 2.4 from this equation. A graph of function TB at 
the section 6 = 0 is presented in Fig. 3 (curve 2). Shown in this graph are the data from 

an experiment performed on shells of thickness h = 0.01 cm with geometric parameters 
a = 3.2 cm, d = 11 cm Fabricated from 12X18HlOT brand steel. 

Taking sin 6 z 6 and cost) z 1 in (3) as the angle 0 varies between - n/6 < 

6 < ni6,we obtain aaT% 
(3h. + 56) + 2’2 [4 - 2 (h + 6) 61 +w = 0 (12) 

With a 6% deviation of the coefficients of the equation from the exact value, we take 
3h + 36 for the coefficient of the first derivative in (12) and the quantity I + 6 = 
(11-t 61, (the mean in the interval under consideration). Separating variables in (12), 
we obtain two equations 

daX 
e~+“~+X(b+Co)‘O.-g $R’Y =o 

a = 3, c = - 2, b = (4 - R2)l(h + e), 

Introducing the new function X = 6 -la C’ (@in the first of these equations and making 
the substitution 4 = 6l/- 4c, we obtain the Whittaker equation 

d2lJ 
44% r -=(<a--4n[+4m2-i)U 
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4mZ - 1 = 2n + (12 

Taking account of the first boundary condition in (4), the general solution of (12) is 

T, = 0ai2 f&M,,, (4) + CzW,,,, (c)I sin By, 

M n,m (4) = f- z/2 trn+‘:*Q, (m - n +.I/,, 2m +- 1. 4) 

w*,= (5) = ,,-w <mi-lis y (m - n ..- ‘I?* 2m $ 1, 4) 

(CD, Y are degenerate hypergeometric functions). The diagram of T, in the section 

0 = - 0.4, obtained by this method, is presented in Fig. 3 (curve 3). 

The bending state of stress in the sector of a thin toroidal shell segment corresponds 
to the character of the change in the membrane forces and is determined on the found- 

ation of the membrane solution obtained. Knowing the general character of the change 
in the state of stress and the magnitude of the moments in the section (r‘ = TO (from the 

solution of the known problem for a shell closed along the circumferential coordinate), 
the magnitude of the bending moments can be determined in the section 0 < cp < cpo. 
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A method is given for solving some boundary value problems for a half-plane 

with a circular hole. It is assumed that the material of the half-plane possesses 
rectilinear anisotropy of a general kind and that planes of symmetry perpendicular 
to the &axis exist, The half-plane is weakened by a circular hole I,, of unit ra- 

dius subjected to an internal pressure p. The affix of the center of I;, (Fig. 1) is de- 
noted by ii 


